FORWARD LOOKING CAUTIONARY STATEMENTS

Except for the statements of historical fact contained herein, the information presented on this presentation and the information incorporated by reference herein, constitutes “forward looking information” within the meaning of applicable Canadian securities laws concerning the business, operations and financial performance and condition of Lithium Energi Exploration, Inc. (“the Company”). All statements, except for statements of historical fact, that address activities, events or developments that management of the Company expects or anticipates will or may occur in the future including such things as future capital expenditures (including the amount and nature thereof), business strategies and measures to implement strategies, competitive strengths, goals, expansion and growth of the business and operations, plans and references to the future success of the Company, and such other matters, are forward looking statements. Often, but not always, forward looking information can be identified by words such as “pro forma”, “plans”, “expects”, “may”, “should”, “budget”, “scheduled”, “estimates”, “forecasts”, “intends”, “anticipates”, “believes”, “potential” or variations of such words including negative variations thereof, and phrases that refer to certain actions, events or results that may, could, would, might or will occur or be taken or achieved. Forward looking information involves known and unknown risks, uncertainties and other factors which may cause the actual results, performance or achievements of the Company to differ materially from any future results, performance or achievements expressed or implied by the forward looking information. Such risks and other factors include, among others, operating and technical difficulties in connection with mining development, actual results of exploration activities, estimation or realization of mineral reserves and mineral resources, the timing and amount of estimated future production, costs of production, capital expenditures, the costs and timing of the development of new deposits, the availability of a sufficient supply of water and other materials, requirements for additional capital, future prices of metal, changes in general economic conditions, changes in the financial markets and in the demand and market price for commodities, possible variations in ore grade or recovery rates, possible failures of plants, equipment or processes to operate as anticipated, accidents, labor disputes and other risks of the mining industry, delays in obtaining governmental approvals, permits or financing or in the completion of development or construction activities, changes in laws, regulations and policies affecting mining operations, hedging practices, currency fluctuations, title disputes or claims limitations on insurance coverage and the timing and possible outcome of pending litigation, environmental issues and liabilities, risks related to joint venture operations, risks related to the integration of acquisitions, as well as risks and uncertainties discussed in the latest Management Discussion and Analysis Reports and Financial Statements (refer to Company filings on www.sedar.com).

Shareholders are cautioned not to place undue reliance on forward looking information. The Company undertakes no obligation to update any of the forward looking information in this presentation or incorporated by reference herein, except as otherwise required by law.
More than most other innovations, the last 20 years has witnessed a formerly obscure light metal, lithium, emerge to literally change the world.

Present trends suggest those changes will accelerate rapidly over the next 10-20 years.

Global lithium demand (now 200,000 tons per year) could increase 3 to 5 times by 2025 to 2030.

In 2007, electric vehicles (EVs) were counted in the hundreds. By 2015, over a million EVs were on the road.

In 2016, over 750,000 EVs sold in one year and growth had started to increase exponentially.

In 2016, batteries surpassed all other lithium uses for the first time (see chart).
THE LITHIUM STORY: CHANGING OUR WORLD FOREVER

- in 2017...
 - The London Metal Exchange announces studies to form 1st commodity index for lithium to support a trading platform.
 - Governments announce bans on internal combustion engine (ICE). (United Kingdom, France, Norway, India, Netherlands, Germany, California, China).
 - Automakers ramp up to keep pace. Peugeot (80% EV by 2023), Volvo (100% EV by 2020), VW plans to spend $84b to bring 300 EV models to market. In October 2017, the world’s largest automaker, GM announced that its going all electric.
 - Analysts say we’re at the “iPhone Moment” for EV, a paradigm shift that changes the world forever.
 - Between 2018 and 2020, EVs will likely reach construction and operating cost parity with internal combustion engines (ICEs).
 - By 2025, analysts predict that both EV and ESS demand will require more than 1,000,000 TPY of lithium production.
 - By 2030, 8 out of 10 cars sold are projected to be EV, global sales then expected to be over 25mm units/year.
 - As EV and ESS production increases, prices (and battery costs) will continue to tumble – further driving demand.
 - Even with the cost of Li-ion batteries and EVs coming down, lithium prices have tripled in the past 3 years.
 - Today, 4 firms (total market cap $52B), produce 90% of world’s lithium. Springing to action in the last 2 years, over 200 junior mining companies are now chasing new supplies. Some analysts predict output still might not be enough.
 - And it’s not just EVs. There is growing demand in commercial and residential storage (“ESS”) and the first electric aircraft, announced in October to be ready by 2020-23, claims a cost/mile of <10% of current aviation fuel costs.

“WE’RE AT A TIPPING POINT, AN IRREVERSIBLE SHIFT... NEW SUPPLIES MUST BE DEVELOPED RAPIDLY TO MEET THIS DEMAND. THE WORLD IS CHANGING.”
THE LITHIUM BOOM HAS STARTED

Now it's all about the right opportunity, and that is where our story begins...

What to know...

- HIGH CALIBRE MANAGEMENT
- VERY TIGHT CAPITAL STRUCTURE
- LARGEST Li PROPERTY PACKAGE IN ANTOFALLA SALAR REGION
- LOCATED IN SOUTH AMERICA’S “LITHIUM TRIANGLE”
- SAME BASIN AS WORLD’S TOP PRODUCERS
- HIGHEST QUALITY IN LOCAL RELATIONSHIPS
- MOST ADVANCED PROCESSING TECHNOLOGY
Over 80% of current lithium supply is in Chile, Argentina and Australia. Mining is either done by brine extraction (61%) or hard rock refining (39%). Few locations are viable to extract economically. The Lithium Triangle in South America is the world’s largest brine extraction area with half the known lithium deposits and 80% of all brine extraction areas.
LEXI’S team has secured the 2ND largest lithium property package of any company in Argentina, consisting of over 240,000 hectares of prospective brine properties in Catamarca Province right in the heart of one of the world’s most prolific, lithium brine production areas.
LEXI holds 34 individual mineral claims totaling over 90,000 hectares, which are allocated in three, separate Argentine subsidiaries, plus a right of first refusal (ROFR) on more than 148,000 additional hectares. Its project areas are located 375 km NW of San Fernando del Valle de Catamarca, in Catamarca Province in the High Cordilleran Andes.
LEXI MANAGEMENT & ADVISORS

Steven C. Howard – CEO

• M&A consulting for, and held senior management positions with, public and private companies, concentrating on natural resource development and environmental strategies with mezzanine funding of up to $50mm per project.
• Owner of Dallas-based energy and technology consulting firm for 40 years.
• Past and current President of several successful E&P firms during the past 20 years.
• Former CEO of a NASDAQ traded resource development company, directing public company administration and bids submissions for projects exceeding $1B in contract revenues.
• Received the EPA Administrator’s Award for excellence in environmental achievement in 1991.
• Has managed aggregate investments of over $100mm in capital for resource and tech start-ups.
• University of Texas at Austin, double major English and Communications, bi-lingual (Spanish). He lives in Dallas, Texas.

Omar E. Ortega, MBA – V.P. Latin America

• A native Argentine, broad career in international investment banking & project finance, supervising investments of $125mm in equity funding.
• Served 8 yrs as Director General for Mexico of Inter-American Holdings, LLC, merchant bank partner with Bank of Montreal.
• Former CEO of a NASDAQ traded resource development company, directing public company administration and bids submissions for projects exceeding $1B in contract revenues.
• Participated in the discovery of several world-class deposits including the Collahuasi and Ujina copper-porphyry deposits, Veladero.
• Decades of work experience with many of the most successful exploration teams in South America.
• Expertise with all major geophysical technologies applied within the mining industry.
• Wide experience in mine permitting, financing, construction, and operation (implemented first operating mine in Paraguay).
• Experience with all major geophysical technologies applied within the mining industry.
• 30 years of advanced exploration practice, responsible business management, scientific team building, safe work practices, and integration with local communities and indigenous peoples, including direct engagement with shareholders and investor relations.
• Served 5 yrs as CEO of Latin American Minerals, Inc. (LAT.V), merchant bank partner with Bank of Montreal.
• Former Director of Corp. Development for Viad Corporation (fka The Dial Corporation), supervised M&A in Southern Europe.
• Former Senior Risk Analysis Officer for Bank of America, where he analyzed the most complex credits offered by the bank, directed analytical training, and enhanced interest risk measurement systems.
• University of Texas at Austin, double major English and Communications, bi-lingual (Spanish). He lives in Dallas, Texas.

Miles Rideout, B.Sc. (Geophysics) – Director of Exploration

• 30 years of advanced exploration practice, responsible business management, scientific team building, safe work practices, and integration with local communities and indigenous peoples, including direct engagement with shareholders and investor relations.
• Served 5 yrs as CEO of Latin American Minerals, Inc. (LAT.V), merchant bank partner with Bank of Montreal.
• Former Director of Corp. Development for Viad Corporation (fka The Dial Corporation), supervised M&A in Southern Europe.
• Former Senior Risk Analysis Officer for Bank of America, where he analyzed the most complex credits offered by the bank, directed analytical training, and enhanced interest risk measurement systems.
• Washington State University (WSU) Graduate School of Business in 1988, Master of Business Administration, emphasis in Finance and B.A. in Business Administration, emphasis in Finance at WSU School of Business in 1985. Fluent in English and Spanish. He resides in Dallas, Texas.

Christopher J. Hobbs – CFO

• Serves as CFO and/or Secretary for numerous private and public firms.
• Has extensive experience in equity financing for mining and oil and gas companies listed on the TSX and conducting M&A services for clients in the mining, oil and gas, and technology sectors.
• Mr. Hobbs is a member of the Chartered Accountants of Ontario and holds a Bachelor of Business Administration Degree from the Schulich School of Business at York University. He lives in Toronto, Canada.

Dr. Gerardo Romero A. – Argentina Senior Counsel

• Noted legal and business advisor, as well as a registered notario publico (public notary), in and for Catamarca Province.
• Served as legal counsel for clients ranging from large, multinationals to small, regional companies to governmental institutions, including Coca Cola Argentina, OSDE, Industrial Union of Argentina, and Catamarca Chamber of Construction.
• Faculty member in the Department of Real Property Rights at the National University of Catamarca.
• Former Government Secretary for the regional Municipality of Recreo and he previously served as Legal Advisor for the Catamarca Chamber of Deputies (state level).
• Counselor Honorarium for various NGOs in Argentina and for the Catamarca College of Dietitians.
• Dr. Romero has specialized expertise in the Catamarca mining sector. He lives in Catamarca, Argentina.

Maria Paula Arrascaeta – Mine Engineering Advisor & Site Coordinator

• Over a decade of experience in diverse disciplines of mine engineering, environmental matters, indigenous relations, and mine site optimization. Ms. Arrascaeta is an skilled Mining Technician with excellent relationships in Catamarca, Argentina.
• She currently consults for numerous companies in Argentina’s mining industry, including Hydroper, SRL (service provider) and Minera Esperanza (frac sand project adjacent to LEXI properties), spearheading environmental impact studies, archeological and biodiversity research, and judicial mine filings.
• She served as Operations Planner & Engineering Draftsman for Minera Alumbrera Limited at Argentina’s largest mine; as Deputy Supervisor of Mining Operations at Gualcamayo; and as the Optimization Team Director successfully implementing improved methods for feedstock crushing, flow calculations, and sizing at the Loma Negra Cement Plant in Alto, Catamarca.
• She is an Honors Scholarship recipient from the Engineering Faculty at Oruro Technical University in Bolivia with specialized studies in Metallurgical Engineering and Materials Science while researching lithium extraction in Salar de Uyuni.
• Ms. Arrascaeta holds a BS as a Mining Technician (Polimodal College, 2005) and is currently a Candidate for Mining Engineer Certification in Technology and Applied Sciences at the National University of Catamarca.
Steven R. Izatt – Advisory Board

- President/CEO of IBC Advanced Technologies, Inc. Since its inception in 1988, IBC has been the leader in developing and commercializing novel, selective metal separations products and processes, based on its proprietary Molecular Recognition Technology (“MRT”) using green chemistry and green engineering principles.
- Served on Board of Directors of International Precious Metals Institute (“IPMI”) from 1993 to 2017.
- Received the IPMI Jun-ichiro Tanaka Distinguished Achievement Award (2008) in recognition of his entrepreneurial contributions to the precious metals industry.
- Co-recipient US DOE Secretary’s Honor Award (2013) and Utah Valley Entrepreneurial Forum’s Most Innovative Product Award (1995). Under Mr. Izatt’s leadership, IBC was recognized as co-recipient of Council for Chemical Research’s Collaboration Research Award (2011), recipient of Utah Innovation Awards Honorable Mention for Innovation (2008), and co-recipient of R&D Magazine’s Top 40 Award (1999) & R&D 100 Award (1996).
- A Registered Member of The Society for Mining, Metallurgy, and Exploration and a member of IPMI and the American Chemical Society. Mr. Izatt has authored or co-authored over 100 publications and presentations.
- Prior to IBC, he was a management consultant at PA Consulting Services, Inc. and Touche Ross & Co. (now Deloitte Consulting), also served as a charter member of the Advisory Board of the Pennsylvania State University Technology and Business Development Center in Great Valley, PA. and worked as an engineer (technology transfer and ventures) at Bethlehem Steel Corporation.
- Mr. Izatt holds an M.S. in Chemical Engineering Practice (1984), an M.S. in Technology & Policy (1984), both from the Massachusetts Institute of Technology, and a B.A. in Chemistry (High Honors, University Scholar, 1981) from Brigham Young University.

Jack Lifton – Advisory Board

- Founding Principal of Technology Metals Research, LLC, consultant, author, and lecturer on market fundamentals of the technology metals.
- He presently does due diligence consulting for institutional investors probing opportunities in which availability of rare and precious metals play leading edge roles in new technology developments.
- A Registered Member of The Society for Mining, Metallurgy, and Exploration, and a member of IPMI and the American Chemical Society. Mr. Lifton has authored or co-authored over 100 publications and presentations.
- Author of due diligence reports for institutional investors in mining and metals.
- Member of the Advisory Board of the Pennsylvania State University Technology and Business Development Center in Great Valley, PA.
- Mr. Lifton was educated as a physical chemist specializing in high-temperature metallurgy. He studied for his Masters Degree in Chemistry at Wayne State University in Detroit, Michigan.

Steven J. Winston – Advisory Board

- Winston Associates. Consulting Engineer for diverse energy and environmental technologies. Currently, a Sr. Technical Advisor to US DOE, Lockheed Martin, Argonne National Labs, Kellogg Brown and Root, General Atomics, Raytheon, Idaho National Laboratory, and a dozen prestigious research universities, including Rice University and University of Alberta.
- Over 40 years experience in senior management positions with major companies, including Lockheed Martin, Parsons Engineering, Westinghouse, Allied Chemical Corporation.
- Chemical engineer, nuclear engineer, neurobiologist with diverse experience in environmental remediation, nuclear fuel reprocessing, Probabilistic Risk Assessments of power stations, managing major first-of-a-kind research and engineering projects and large-scale design and construction projects, including start-up of entire power plants and new chemical processing regimes.
- Leading proponent of exploring intersection of nanotechnology and nuclear sciences.
- Leading advocate for developing the next new generation of nanoscale methods to extend materials sciences to the molecular level, involving novel combinations of additive, subtractive, and functional techniques tailored to angstrom scale for a broad range of applications, including molecular metals separation, highly-focused short pulse lasers, particle acceleration, and light-weight radiation shielding.
- Mr. Winston holds advanced degrees in Neurobiology and Neurosciences (University of Pittsburgh, 1989) and Nuclear Engineering (University of Idaho, 1976). He earned his BS in Chemical Engineering at the University of Nebraska (1973). He is a highly sought after advisor to governments and major corporations, an accomplished musician and artist, and lifelong proponent of applying “leading edge” systems engineering to solve complex challenges in chemical and nuclear disciplines.

Dra. Teresita Regalados – Advisory Board

- Faculty of Technology and Applied Sciences, National University of Catamarca (UNCa) since 1994, Adjunct Professor, Chair of Environmental Impacts Mining Division under MIne Engineering Department - teaching and continued research.
- Former Director of Institute of Mining Research IDIM in Technology and Applied Sciences at UNCa.
- Former Director for Provincial Environmental Mining Management Division at DiPGAM, a division of the Mining Secretary for Catamarca Province.
- Member of technical team for 12 years at Ministry of Mining, evaluating environmental impacts, controls, inspections, monitoring, and environmental audits.
- Former Director for seven years with the Mining Police under the Provincial Mining Directorate.
- Fellow in National Atomic Energy Commission (CNEA) at the San Rafael-Mendoza Mining Complex.
- Dra. Regalado holds a B.S. as a Mine Engineering from UNCa (1999) and completed her M.Sc. in Conservation and Environmental Management at UNCa in 2007. She resides in Catamarca, Argentina.
LOCATION - ANTOFALLA SALAR

SOUTH AMERICA

ARGENTINA

CATAMARCA PROVINCE

SALAR DE ANTOFALLA
Antofalla Salar is approx. 130 km long and varies from 5-10 km wide (visible surface) with a measured depth in some areas of over 500 meters. The white shown in this image depicts the visible surface of this tectonic basin, which typically exhibits at surface as a white salt pan with varying, but limited, areas of surface water accumulation. Younger lava flows cover some of the basin's lateral limits, indicating that the basin is much larger than merely what is visible on the surface.
LEXI holds the 2nd largest package of prospective lithium brine properties in Argentina, acquired using the concept of CLOSE-OLOGY, applying lessons from the proliferation of unconventional shale development in the US, which suggests that, in any new commodity race, there is wisdom in:

1. acquiring close to where there is known geology
2. acquiring as much property as reasonably possible
3. acquiring at the lowest cost possible
4. acquiring close to known production by majors as possible.

FMC (gray) is the largest lithium producer in Argentina, operating the western half of Salar de Hombre Muerto (SHM), one of the world’s largest brine production areas. Galaxy and Lithium One (dark green) are now exploring eastern areas in this salar.

Light green shaded areas are LEXI’s claims (both held and ROFR). >90% of its 240k+ ha. have status as ‘new mines’, resulting in a 3-yr exemption from mining fee payments.

Red outline designates the perimeter of LEXI’s area of exclusivity for use of MRT, a proprietary technology for accelerated Li processing (further discussed in the following pages).

Tan-shaded area shows the concession block in the Antofalla Salar acquired by Albemarle (world’s largest Li producer) from Bolland Minera, SA in Q3 of 2016. In Q2 of 2017.
LEXI ANTOFALLA CLAIMS-128k ha.+ 40k ha. (ROFR)

LEXI PIPANACO CLAIMS-60k ha. (ROFR)

ALBEMARLE CLAIM BLOCK

BOLLAND MINERA HOLDINGS

FMC

Right of First Refusal (ROFR) claims at Pipanaco cover 85% of the salar. Properties are less than a two hour drive from Catamarca City.

In one 8 km x 8 km area, 9 to 10 wells could be drilled on 2 km spacing, enabling extraction of lithium-bearing brines from an extensive volume of the basin — more than sufficient to obtain commercial quantities of lithium.

(For illustration purposes only, actual well spacing may vary)
LEXI PROPERTIES – FAVORABLE GEOLOGY – INTERSECTION OF FAULTS AND MAJOR LINEAMENTS

Figure Key: (1) Antofalla Salar (incl. small salars associated with southern drainage basin); (2) Laguna Caro Salar; (3) Potreros Salar; (4) yellow outline of Laguna Caro Project on eastern extension of box; (5) yellow outline of Antofalla North on western and northern extensions of box; (6) yellow outline of Antofalla South; (7) red outline indicates Albemarle properties in central portion of Antofalla salar; (8) Salar de Hombre Muerto; (9) Rio de Patos outflowing north out of Galen Volcano Caldera and feeding into eastern half of SHM (closed basin); (10) Galen volcanic cone in middle of world’s largest caldera; (11) tectonic fault lines, principally caused by subduction of Nazca continental plate pushing eastward under the South American plate.
LEXI PROPERTIES
PRIME ASSETS BETWEEN THE MAJORS

IMPRESSIVE PROPERTY PACKAGE
- Size – over 240,000 hectares.
- Initial testing (surface, pits, prior exploration) confirmed viable Li content in multiple areas.
- Multiple salars – 3 distinct areas, geographically related.

DESIRABLE LOCATION
- Mining-friendly province, ready for growth.
- Adjacent to proven production – properties abut the world leaders in lithium.
- All-weather roads to sites, easy access to paved roads.
- Sufficient space for processing facilities and infrastructure development.
- Access to work force with knowledge of operations.

IDEAL CHEMISTRY and THE RIGHT WATERS
- Indications of boron, potassium (potash), and other commercial minerals.
- Moderate to High grade, low Mg content (easier to refine).
- Hydrogeology suggests the basin under LEXI’s properties is replenished by aquifers.
- Access to fresh water, low environmental impacts.
The total investment in new mines and production plants, including other Li-ion battery elements, will likely range from $350 billion to $750 billion, according to analysts at researcher Sanford C. Bernstein & Co.

CONVENTIONAL PROCESSING:
- 2-3 yrs to build, 2-3 yrs to process, sales in 4-6 yrs
- Capex: USD$150-350mm - evaporation ponds, solvent extraction
- Opex: expensive, low % recovery, hazardous waste residuals.

ACCELERATED METHODS:
- None yet in commercial operation, 7-10 in development
- Purportedly faster to build, finished product in 24 hrs.
- Projected to have lower capex, less opex, higher % recovery.

THE KEY FOR MANY NEW PRODUCERS WILL BE SPEED TO MARKET WITH FINISHED PRODUCT

The total investment in new mines and production plants, including other Li-ion battery elements, will likely range from $350 billion to $750 billion, according to analysts at researcher Sanford C. Bernstein & Co.
PROJECT DEVELOPMENT FLOW – Step Two Confirmation

Initial Results of Q1 2018 Geophysical Studies

REGIONAL CLAIM MAP
PROPERTY HOLDERS IN AND AROUND ANTOFALLA & HOMBRE MUERTO SALARS
CATAMARCA PROVINCE, ARGENTINA

LEXI CLAIMS
ARE SHOWN IN GREEN
APPROX. 240,000 HECTARES
90% COMPLETED TITLE GRANT
10% NEARING COMPLETION OF TITLE GRANT

NORTHERN LEXI CLAIMS AREA ➔

WHY DID LEXI OBTAIN PROPERTIES IN THIS AREA?

KNOWN GEOLOGY

Between 2008 and 2011, a private mining company, Bolland Minera, drilled 56 test wells during three separate campaigns working with the Institute of Mineral Resources for National University of La Plata in Buenos Aires (“INREMI”). Well bore logs (porosity, neutron density), permeability, hydraulic gradient, core sample chemistry, together with gravimetric studies (among others) were analyzed and then published during that period. In September, 2016, Albemarle Corp. announced its acquisition of Bolland’s claim block in the center of the Antofalla Salar (tan block in mid-section of the salar). The screenshot below was excerpted from a video report by INREMI, which maps the test wells on Albemarle’s property and includes INREMI’s findings and resource estimates from the test results.
TEM GEOPHYSICAL SURVEYS

Of all the physical properties of earth materials that can be measured, electrical resistivity exhibits the greatest variation, ranging over approx. 7 orders of magnitude (10^7). Resistivity, as a result, is highly sensitive to changes in porosity, metal ions in solution, hydrothermal and water variations, secondary porosity due to fracturing, and other geological effects.

The Transient Electromagnetic soundings method (TEM) is a highly-effective, non-intrusive geophysical technology used to obtain electrical resistivity data to depict the earth’s subsurface. In contrast to electrical methods, TEM produces rapidly acquired soundings, facilitating accurate data in continuous sections of tightly spaced sounding sites.

TEM can be deployed in many configurations, applicable for many purposes, like lithologic mapping, delineating aquifers and saline interfaces or other aquifer stratification, geothermal exploration, and environmental and engineering studies.

A specialized transmitter drives a time-varying current into a loop of ungrounded wire on surface, which generates a magnetic field that is collapsed in a controlled manner to cause eddy currents in the subsurface, which in turn create secondary magnetic fields. The changes over time of these secondary magnetic fields are measured and recorded at surface with a receiver linked to a electromagnetic antenna. The diffusion rate of the secondary magnetic fields are indicative of resistivity (conductivity-thickness in certain configurations) of the subsurface materials. Used to map geologic structures, TEM can delineate geothermal sources, groundwater strata, fresh and saltwater interfaces, and show depth to basement.
PROJECT DEVELOPMENT FLOW – Step Two Confirmation

Initial Results of Q1 2018 Geophysical Studies
Probable brine horizons were detected throughout the entire 80 km² surveyed from just below surface to as much as 400 meters in depth, inferring that lithium-bearing brine may exist beneath much of LEXI’s 60,000+ hectares in the northern areas of this salar. Published assay results from Bolland’s wells just 3 km south of these surveys in the same Antofalla basin suggest corroborating data for LEXI’s first 8,000 hectares surveyed, moving the Company closer to its first resource estimate.

As of April 10, 2018, LEXI has completed 44 line-kilometers (“line-km”) of TEM surveys over 8 survey lines. At least 100 line-km of additional TEM surveys (45 survey lines over 19 LEXI concessions) are planned during the next 2-3 months. TEM surveys detect variations in subsurface conductivity – a primary method for imaging aquifers. Although resistivity values cannot confirm the presence or grade of lithium, the results have identified highly conductive zones consistent with similar lithium-bearing brine aquifers that are known to exist in other salars near these properties.
The data from 5 of the first 7 lines reveal outcropping volcanic units correlated to electrical resistivities of 100 Ohm-m and low-lying areas within the salar correlated to less than 1 Ohm-m, the latter depicting an upper limit of extremely conductivity occurring at a constant elevation, a characteristic commonly observed over unconfined aquifers.

Of the 5 lines processed by Quantec Geoscience, based on comparative results with similar sedimentary salar strata where lithium-bearing brines are hosted, these data indicate a likely-continuous, buried horizon of high conductivity in this part of the Antofalla basin complex. Thus, the entire extent of these properties appears to contain subsurface brine, suggesting the potential for lithium mineralization throughout these properties. LEXI’s team will utilize these results to target test well locations. With such compelling geophysical results, plans for LEXI’s drilling campaign will move forward to test for chemistry, lithology, porosity, pump rates, and other hydrogeological factors.

Volcanic units visible on surface and interpreted in TEM sections.
PARTICLE INTERACTION

Ions, elements, and complex molecules go through generally predictable changes based on interaction with other materials. These changes most often occur due to known physical, thermal, electrical, and chemical properties that cause particles to be attracted, repelled, combined, divided, or catalyzed in the presence of other particles, often influenced by temperature, pressure, orientation, surface area, and other factors. This is where chemistry intersects with geology, biology, metallurgy, and most other sciences. In the world of refining metals, predictable chemical properties have enabled the evolution of techniques to segregate and refine complex resources into purified metals, which are critical for modern societies. To date, however, most of these techniques have relied on processing that involves dangerous materials and hazardous residuals, as in the case of solvent extraction – one of the most widely used methods for metal extraction. Today, life on our Earth comes with an increasingly more urgent need to focus human activities on more environmentally friendly ways to live, work, consume, and protect. This is now giving rise to a paradigm shift at the molecular level, the emergence of “green chemistry”.

MOLECULAR RECOGNITION TECHNOLOGY

- IBC Advanced Technologies (IBC) is a successful, 29-year old chemical engineering and manufacturing company.
- IBC is dedicated to green chemistry and has developed a proprietary Molecular Recognition Technology (MRT).
- MRT is centered around green chemistry and green engineering, based on Nobel Prize winning science.
- The underlying fundamentals of MRT are based on “known science”, not just theory.
- IBC is the first company in the world to commercialize this green chemistry for metals separation.
- MRT has been proven in commercial installations on 5 continents for numerous, metals separation applications, including PGMs, REEs, and Copper (many clients, including Asarco, Impala Platinum, Tanaka Kikinzoku).

LEXI HAS ENTERED INTO A CONTRACT WITH IBC GIVING LEXI RIGHTS TO USE MRT IN EXCLUSIVE AREAS OF ARGENTINA.
LEXI’S PATH TO PRODUCTION – MRT ADVANTAGES

MRT GENERAL ADVANTAGES INCLUDE:

• Proprietary manufacturing of SuperLig® products (ligand molecules attached to beads), which capture target metal ions.
• High selectivity for individual target metal (>99% purity) with extremely high recovery rates (>99% recovery).
• Process uses simple water-based chemicals and dilute reagents with NO organic solvents or extra separating agents.
• Process operates at ambient temperature and atmospheric pressure, small plant footprint, scalable, minimal inventories.
• Involves no thermal processing (burning) and is a closed loop system with no emissions.
• Simple 4-step process to recover high purity target metal, much more efficient than solvent extraction.
• Self-contained, automated, virtually passive extraction, well-confirmed chemical engineering procedures.

MRT LITHIUM PROCESSING ADVANTAGES INCLUDE:

• Direct brine separation, eliminates need for evaporation ponds (CapEx savings of $100-150mm for 25k tpy Li carbonate plant).
• Highly selective for lithium over magnesium (a significant challenge in traditional processing).
• Higher Li recovery rates (99% recovery vs. ~50% with traditional processes), SuperLig® molecules are re-usable (long life cycles).
• Much lower capex, lower opex – one major unit operation (automated and simple) vs. multiple, complex unit operations.
• Rapid throughput (days vs. years), much faster production of finished products.
• No moving or re-working of in-process material, almost no in-process Li inventory (more rapid sales, less working capital requirements).
• Much simpler equipment vs other extraction methods, no harsh chemicals, extremely low risks for pollution or health & safety.
• Much lower labor requirements, smaller plant size, no crystallization or complex chemistry challenges.
• Almost immediate re-introduction of Li-free raffinate into aquifer zone, precludes salar subsidence or aquifer depletion.

LEXI AND IBC HAVE CONCEIVED AN EFFICIENT DESIGN FOR A MODULAR, 1,000 TPY LITHIUM EXTRACTION PLANT. “MODULE 1” CAN BE ENGINEERED, CONSTRUCTED, AND IN OPERATION IN LESS THAN 2 YEARS AFTER VALIDATING BRINE TESTS. MORE THAN MERELY A PILOT PLANT, MODULE 1 WILL BE EASILY REPLICATABLE TO SCALE UP PRODUCTION.
OVERVIEW OF SuperLig® DEVELOPMENT AND HOW MRT WORKS

1. Analyze target metal for physical, chemical, thermal, and electrical properties.

2. Proprietary Capture: Design ligand molecule with “cavity+affinity” to “fit+attract” only the target metal.

3. Manufacture the new ligand molecule.

4. Proprietary Carrier: Covalently bond the newly manufactured ligands to a suitable, solid substrate (“beads” of silica or polymers).

5. A new SuperLig® (the ligand-coated bead) is ready for manufacturing.

6. Construct system controls and plumbing to automatically move raw lithium brine into columnar tanks to extract the lithium ions by loading the new SuperLig® beads in a 4-step process—load, wash, elute, wash, and then repeat.

- **Empty tank filled with SuperLig® beads**
- **As lithium-rich brine is fed through the tank, Li ions are captured and sequestered on SuperLig® beads**
- **After full loading, fresh water is used to clean brine residue off of Li loaded beads**
- **Diluted acid is used to elute the beads now loaded with pure Li, stripping out only captive lithium ions**
- **A final wash with fresh water or dilute base cleans any residual acid and the load cycle is ready to begin again**

Final steps engineered for desired products to meet customer needs, at >99% purity.

- **LiOH**
- **Li_2CO_3**
HOW DOES MRT COMPARE TO OTHER ACCELERATED PROCESSING

Several engineering programs are in progress to develop lithium processing techniques that skip the 18-24 months required for brine concentration in evaporation ponds, intending instead to process brine directly into finished products in a matter of days. To date, no commercial operations exist for any of these new lithium extraction methods (including MRT). Most are based on designs that accelerate conventional extraction with solvents. LEXI’s viewpoint is that “we hope they’re all successful”. The industry needs success stories and the world needs more lithium. However, comparisons are inevitable and we believe MRT has profound advantages. This table is a comparison, based on published data, of MRT and Tenova-Bateman, arguably one of industry’s leading candidates for accelerated processing. The distinctions in unit operations, requirements for equipment, supplies and labor, combined with the operational risk profiles suggest that there are clear, CapEx and OpEx differences that sharply favor MRT.

<table>
<thead>
<tr>
<th>COMPARISON OF PROCESS COMPONENTS</th>
<th>MRT</th>
<th>TENOVA-BATEMAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEPARATION PROCESS SELECTIVITY</td>
<td>VERY HIGH: SuperLig® is highly selective for Li in mixed solutions with contaminants, allows for simple Green Engineering and Green Chemistry process</td>
<td>VERY LOW: requires complex process to compensate for low selectivity. NOT based on Green Engineering and Green chemistry</td>
</tr>
<tr>
<td>MAJOR UNIT OPERATIONS</td>
<td>ONE (1): MRT</td>
<td>FOURTEEN (14): high pressure membranes, precipitation, pulsed SX, IX, electrolysis, crystallization, and others</td>
</tr>
<tr>
<td>Li RECOVERY PERCENTAGE</td>
<td>> 99%</td>
<td>85%</td>
</tr>
<tr>
<td>ORGANIC SOLVENTS</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>OPERATING PRESSURE REQUIREMENTS</td>
<td>NONE: operations at atmospheric pressure and ambient temp</td>
<td>VERY HIGH: 60 Bars for membranes, large blowers to produce air required for the pulsation in pulsed SX columns – high capex and significant maintenance</td>
</tr>
<tr>
<td>ELECTRICAL AND WATER USAGE</td>
<td>VERY LOW</td>
<td>VERY HIGH</td>
</tr>
<tr>
<td>CAPACITY UTILIZATION AND EXPANDABILITY</td>
<td>HIGH: Modular design, easy expansion to meet increased production needs</td>
<td>LOW: Fixed capital, high installed cost, inability to easily expand and/or contract incrementally</td>
</tr>
<tr>
<td>ENVIRONMENTAL AND SAFETY CONCERNS</td>
<td>VERY LOW: No organic solvents, simple chemicals, closed system</td>
<td>VERY HIGH: Organic solvents, high pressure, fire and worker exposure risks, waste disposal liabilities</td>
</tr>
<tr>
<td>OPERABILITY, PRODUCT PROCESSING TIME AND PROCESS RISK</td>
<td>SIMPLE: One major unit operation in four steps, easy to automate, fast throughput, no side streams, low labor costs, low maintenance</td>
<td>COMPLEX: 14 major unit operations to equilibrate, multiple side streams to manage, slow product throughput and large in-process inventories requiring high working capital, high labor costs</td>
</tr>
<tr>
<td>EQUIPMENT COMPLEXITY AND MAINTENANCE</td>
<td>LOW: simple, commonly available equipment, low maintenance</td>
<td>HIGH: 14 unit operations requiring highly specialized equipment, and continuous high maintenance</td>
</tr>
<tr>
<td>EQUIPMENT AND CHEMICAL SOURCING RISKS</td>
<td>LOW: IBC supplies proprietary SuperLig®, other equipment is generic, obtained from multiple suppliers</td>
<td>HIGH: Multiple sole-source outside vendors of highly specialized equipment and chemicals</td>
</tr>
<tr>
<td>Li END-PRODUCT VALUE</td>
<td>HIGH: Ability to easily tailor products to end-user specs and obtain maximum value</td>
<td>LOW: Stock product only – no chemical formulation expertise</td>
</tr>
<tr>
<td>VALUE-ADDED PRODUCTS (e.g. Cs/Sr)</td>
<td>YES</td>
<td>NO</td>
</tr>
</tbody>
</table>
GOALS FOR MODULE 1:

- Validate MRT Efficacy For Lithium at Commercial Scale
- Completion of Engineering & Construction in Less Than 2 Years
- CAPEX: Less than USD$20mm for functioning Module 1
- Produce USD$20,000,000 per year in Gross Revenues at +60% EBITDA
- Set Standards For Modular Expansion to 25k or more TPY
- Demonstrate Operations in Front of Prospective “Toll Clients”

SIMPLIFIED PROCESS FLOW DIAGRAM ANNUAL BASIS

The companies below (and others) hold claims within LEXI’s exclusive area for MRT. In the future, it may become mutually advantageous to explore fee-based processing for neighboring producers.
1,000 TPY MODULE 1 – FIRST COMMERCIAL STEP

LEXI MODULE 1 – *SuperLig*® MRT 1,000 TPY LITHIUM PLANT

CONCEPTUAL 3D SCHEMATIC

SuperLig® MRT System for Lithium Extraction

Conversion to High Value Final Lithium Product

Brine Input/Output and Re-agents for MRT System

Pump Bay and Filtration

PLC Cabinet for Automation and Control

PLC Cabinet
HOW WE STACK UP

TSX.V Lithium Focused Companies (as of April 10, 2018)

<table>
<thead>
<tr>
<th>Company Name</th>
<th>Share Price CAD</th>
<th>Shares Outstanding</th>
<th>Market Cap. (CAD$MM)</th>
<th>Project(s)</th>
<th>LCE (Kt)</th>
<th>Area (ha)</th>
<th>Testing (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orocobre Limited (ORL)</td>
<td>$4.94</td>
<td>260,710,716</td>
<td>$1,287.91</td>
<td>Salar de Olaroz, Argentina</td>
<td>6,400</td>
<td>63,000</td>
<td>684</td>
</tr>
<tr>
<td>Lithium Americas Corp. (LAC)</td>
<td>$7.18</td>
<td>88,511,878</td>
<td>$635.52</td>
<td>Caucharí-Olaroz, Argentina</td>
<td>8,700</td>
<td>70,000</td>
<td>570-679</td>
</tr>
<tr>
<td>LSC Lithium Corporation (LSC)</td>
<td>$0.84</td>
<td>142,403,974</td>
<td>$119.62</td>
<td>Salar Salinas Grande, Argentina</td>
<td>239</td>
<td>71,407</td>
<td>227-2090</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Salar Rio Grande, Argentina</td>
<td>20</td>
<td>26,865</td>
<td>220-420</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Salar Pastores, Argentina</td>
<td>8,60</td>
<td>21,425</td>
<td>180-500</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Salar Pastores Grandes, Argentina</td>
<td>unknown</td>
<td>2,683</td>
<td>43-317</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Guayacayac, Jima, Arizaro, Others</td>
<td>unknown</td>
<td>108,561</td>
<td>unknown</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neo Lithium Corp. (NLC)</td>
<td>$1.50</td>
<td>117,160,437</td>
<td>$175.74</td>
<td>Tres Quebradas, Argentina</td>
<td>unknown</td>
<td>28,900</td>
<td>895</td>
</tr>
<tr>
<td>Argosy Minerals, Ltd. (ASX:AGY)</td>
<td>$0.29</td>
<td>918,500,000</td>
<td>$280.14</td>
<td>Ricon Salar, Argentina</td>
<td>unknown</td>
<td>2,346</td>
<td>300-400</td>
</tr>
<tr>
<td>Wealth Minerals Ltd. (WML)</td>
<td>$1.55</td>
<td>109,927,066</td>
<td>$170.39</td>
<td>Atacama Salar, Chile</td>
<td>unknown</td>
<td>46,200</td>
<td>180-400</td>
</tr>
<tr>
<td>Lithium X Energy Corp. (UX)</td>
<td>ACQUIRED BY NEXTVIEW</td>
<td>$2.76</td>
<td>202,060,000</td>
<td>$159.29</td>
<td>Sal De Los Angeles, Argentina</td>
<td>2,800</td>
<td>8,156</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Clayton Valley, Nevada</td>
<td>unknown</td>
<td>6,070</td>
<td>unknown</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pastos Grandes, Argentina</td>
<td>unknown</td>
<td>8,664</td>
<td>330-535</td>
</tr>
<tr>
<td>Millennial Lithium Corp. (ML)</td>
<td>$2.56</td>
<td>81,723,005</td>
<td>$209.21</td>
<td>Caucharí [JV w/Orocobre], Argentina</td>
<td>470</td>
<td>21,375</td>
<td>260-400</td>
</tr>
<tr>
<td>Advantage Lithium Corp. (AAL)</td>
<td>$1.04</td>
<td>141,322,196</td>
<td>$146.98</td>
<td>Antofalla, Incahuasi, Guayatayoc</td>
<td>unknown</td>
<td>44,773</td>
<td>200-326</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Clayton Valley / Mexico</td>
<td>unknown</td>
<td>110,200</td>
<td>unknown</td>
</tr>
<tr>
<td>Liberty One Lithium Corp. (LBY)</td>
<td>$0.39</td>
<td>66,628,333</td>
<td>$25.99</td>
<td>Pocitos Salar, Argentina</td>
<td>unknown</td>
<td>15,867</td>
<td>unknown</td>
</tr>
<tr>
<td>Pure Energy Minerals Limited (PE)</td>
<td>$0.27</td>
<td>131,814,335</td>
<td>$35.59</td>
<td>Paradox Valley, Utah</td>
<td>unknown</td>
<td>1,813</td>
<td>unknown</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Clayton Valley, Nevada</td>
<td>unknown</td>
<td>218</td>
<td>123-370</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pocitos Salar, Argentina</td>
<td>unknown</td>
<td>13,000</td>
<td>unknown</td>
</tr>
<tr>
<td>Lake Resources, NL (ASX:LKE)</td>
<td>$0.09</td>
<td>291,980,000</td>
<td>$30.66</td>
<td>unknown</td>
<td>unknown</td>
<td>19,000</td>
<td>unknown</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>unknown</td>
<td>unknown</td>
<td>29,000</td>
<td>unknown</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Kachi Area, Argentina</td>
<td>unknown</td>
<td>49,000</td>
<td>100-322</td>
</tr>
<tr>
<td>Argentina Lithium & Energy (LIT)</td>
<td>$0.18</td>
<td>76,287,707</td>
<td>$14.11</td>
<td>Arizaro, Argentina</td>
<td>unknown</td>
<td>20,500</td>
<td>unknown</td>
</tr>
<tr>
<td>Ultralithium Corp. (UIL)</td>
<td>$0.22</td>
<td>70,548,582</td>
<td>$15.52</td>
<td>Big Smokey Valley, Nevada</td>
<td>unknown</td>
<td>12,500</td>
<td>unknown</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Thunder Bay, Ontario, Canada</td>
<td>unknown</td>
<td>2,416</td>
<td>unknown</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Amelia, Sallire, Archibara et al, Arg.</td>
<td>unknown</td>
<td>22,176</td>
<td>unknown</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>La Borita, Argentina</td>
<td>unknown</td>
<td>3,000</td>
<td>150-227</td>
</tr>
<tr>
<td>Lithium Energy Exploration, Inc. (*)</td>
<td>$0.43</td>
<td>65,583,222</td>
<td>$27.13</td>
<td>Inca-Poteros-Cata Sal, Argentina</td>
<td>unknown</td>
<td>17,759</td>
<td>203-825 **</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Antofalla North, Argentina</td>
<td>unknown</td>
<td>41,496</td>
<td>200-400 **</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Antofalla South, Argentina</td>
<td>unknown</td>
<td>69,112</td>
<td>200-400 ***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Antofagasta Area, Argentina</td>
<td>unknown</td>
<td>9,500</td>
<td>200-400 ***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>North & South Antofalla, Argentina</td>
<td>unknown</td>
<td>43,000</td>
<td>200-400 ***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pipanaco Salar, Argentina</td>
<td>unknown</td>
<td>61,000</td>
<td>50-150 ***</td>
</tr>
<tr>
<td>International Lithium Corp. (ILC)</td>
<td>$0.08</td>
<td>94,795,902</td>
<td>$7.58</td>
<td>Argentina / Ontario / Ireland</td>
<td>unknown</td>
<td>19,000</td>
<td>unknown</td>
</tr>
</tbody>
</table>

* Post 1st rounds of financing and acquisition of initial lithium properties

** Inca-Poteros-Cata Sal area samples from surface collection & pits hand-dug to 3m (University of Cordoba)

*** Based on historical surface/pit samples and drilling conducted by third parties and Antofalla analysis from prior NI 43-101 (James Ebisch, Prof.Geo., 2009). More testing required.
Capitalization Summary

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common Share Price (10 Apr 2018)</td>
<td>CAD $0.43</td>
</tr>
<tr>
<td>Basic Common Shares Outstanding</td>
<td>65.58M</td>
</tr>
<tr>
<td>Fully Diluted</td>
<td>71.83M</td>
</tr>
<tr>
<td>Basic Market Capitalization</td>
<td>CAD $27.13M</td>
</tr>
</tbody>
</table>

Major Shareholder Summary (approximate)

<table>
<thead>
<tr>
<th>Shares</th>
<th>(M) %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Closely Held (High Net Worth Groups)</td>
<td>19.2M</td>
</tr>
<tr>
<td>Insiders & Management</td>
<td>18.0M</td>
</tr>
<tr>
<td>Technology Group</td>
<td>5.0M</td>
</tr>
<tr>
<td>Total</td>
<td>42.2M</td>
</tr>
</tbody>
</table>

Management & Board are aligned with Investors

“We expect sales of electric and hybrid vehicles to push lithium demand growth 16 percent annually over the next decade, faster than almost any major commodity over the past century, from about 175,000 metric tons in 2015 to about 775,000 by 2025.”

David Wang, Morningstar Analyst, March 24, 2017
THE ROAD AHEAD – MILESTONES

- Acquisition of first three property groups – total 128,367 ha. (completed)
- First 2 funding rounds - $2.525mm CDN total (completed)
- First Right of Refusal grant, add'l properties – total 100,000+ ha. (completed)
- Perfecting Title (“sentencias” 90% completed, 10% expected next 6 months)
- NI 43-101 Technical for 3 projects areas, including Stage 1 testing (completed)
- Expand mgmt and development teams (incl. plant design) (in process)
- Engage indigenous PR and employment agreements (in process)
- Plan and complete “3rd round” funding - $4mm CDN (completed)
- Stage 2 geophysical mapping to identify optimal drilling locations (Q1-Q2 2018)
- Plan & execute Labor Legal, Mensura, and Impacto Ambiental (Q1-Q4 2018)
- Drill first 5-10 test wells, likely in northern Antofalla properties (Q4 2018 to Q2 2019)
- Add'l geophysical mapping & Preliminary Feasibility Study (Q4 2018 to Q2 2019)
- Commence and complete engineering for MRT Module 1 (Q2-Q4 2018)
- Complete “4th round” funding – up to $30mm CDN (Q2-Q4 2018)
- Complete acquisition payments (scheduled through 2019)
- Construct MRT Module 1 & needed infrastructure (Q3 2018 to Q3 2019)
- Plan and complete drilling of up to 50 add'l test wells (2019-2021)
- Determine last steps to start operations (2019-2021)
- Expand team, final design, implementation, start operations (2020-2022)

Variations in “The Road Ahead” will occur, as new data and/or opportunities arise.

Samples from LEXI’s Laguna de Los Colorados property in the Antofalla Salar tested at over 200 mg/L of lithium at surface.
Published reports on comparative geology and brine sampling suggest Li values are likely to increase with depth.

43-101 Technical Definitive Agreement
Perfecting Title
3rd Round Funding
Geophysical + 1st Drilling
Preliminary Feasibility Study
MRT Module 1 Engineering
4th Round Funding
MRT Module 1 Construction
Drill up to 50 Add’l Test Wells
Commence Operations

<table>
<thead>
<tr>
<th>Year</th>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>Q4</th>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>Q4</th>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>Q4</th>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>Q4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td></td>
</tr>
</tbody>
</table>
WHY LEXI?

- TOP FLIGHT MANAGEMENT
- TIGHT CAPITAL STRUCTURE
- GREAT PROPERTY PACKAGE
- ADJACENT TO TOP PRODUCERS
- QUALITY LOCAL RELATIONSHIPS
- ADVANCED PROCESSING TECHNOLOGY
- HIGH SPEED, LOW COST PATH TO PRODUCTION

Contact
Chris Hobbs, CFO

T: 647.794.7769
C: 416.276.6689